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Abstract

The JMMS equations are studied using the geometry of the spectral curve of a pair of dual
systems. It is shown that the equations can be represented as time-independent Hamiltonian flows
on a Jacobian bundle.
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1. Introduction

In this paper we revisit the geometry of dual isomonodromic deformations of a linear
system onCP1. The duality was originally studied, at least in the form in which we are
interested, by Harnad[6]—although it is closely related to the ‘Laplace transform’ in the
theory of Frobenius manifolds[2,3].

The problem is to construct isomonodromic deformations of a linear meromorphic dif-
ferential operator on the Riemann sphereCP1 of the form

d

dw
− b−

n∑
i=1

Ni

w− ai
, (1)

where theNi’s are rank one,r × r matrices, andb = diag(b1, . . . , br), with thebi distinct.
The corresponding linear system of differential equations hasn regular singularities at the
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pointsai, together with an irregular singularity of Poincaré rank one at infinity, where the
leading coefficient has distinct eigenvalues.

The isomonodromic deformations are governed by the JMMS equations[8]. These ap-
pear, or are closely related to equations that do appear, in many areas of mathematical
physics, from impenetrable bose gases, where they were originally introduced, to Frobe-
nius manifolds and Seiberg-Witten problems (see[3,5]).

We shall consider deformations that fix the position of the pole at infinity, but change
the parametersbi andai. Such deformations are equivalent to the deformations of a second
‘dual system’ of the same type, in which the roles of the two sets of parametersai andbi
are interchanged[6]. The dual system is constructed by using the rank-one property of the
Ni’s to write the first linear operator in the form

d

dw
−Gt(a− wIn)

−1F + b, (2)

whereG,F aren× r matrices anda = diag(a1, . . . , an). Then the dual operator is

d

dz
− F(b− zIr)

−1Gt + a. (3)

At a formal level, the duality is given by writing the first linear system of ODEs in the form(
d

dw
+ b

)
v−Gtu = 0, (a− w)u+ Fv = 0,

wherev is anr-vector andu is ann-vector—this reduces to(2) on elimination ofu. Then
the second system is given by a formal application of the Laplace transform, to replace
d/dw by z, andz by −d/dw, as was done in a related context by Balser et al.[2] and later
in the context of Frobenius manifolds by Dubrovin[4].

In his original investigation, Harnad considered Hamiltonian flows on certain subspaces
of the loop algebrãgl(n)−, the subspaces being given by varying the termF(b−zIr)−1Gt in
(3). He showed that they were generated by the polynomials invariant by the adjoint action
of the loop group̃Gl(n). By writing down the explicit Lax equations, he deduced that they
correspond to the isomonodromic deformations of the system that change the position of the
regular singularities. He showed that they could be viewed as time-dependent Hamiltonian
flows on the symplectic manifold of pairs ofn × r matrices, with respect to a canonical
symplectic form. The ‘times’ are the positions of the poles, and the Hamiltonians are

Hi(N) = 1

4πi

∮
tr(N(w, a))2 dw, (4)

where

N(w, a) = GT(a− wIn)
−1F + b

and the integral is around a loop containing only theith pole. They generate the nonau-
tonomous system

∂Nj

∂ai
= [Nj,Ni]

aj − ai
, j �= i, i, j = 1, . . . , n,

∂Ni

∂ai
=
b+

∑
j �=i

Nj

aj − ai
, Ni

 .
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Here, we shall show that the Hamiltonian theory can be understood in a different way by
introducing natural variables conjugate to theai’s andbi’s. We associate with the linear
system(1) aspectral curveΣ in CP1 × CP1, given by

det(N(a,w)− zIr) = 0

and a line bundleL → Σ of degreenr (essentially the line bundle determined by the ‘divisor
coordinates’ in[1]). The spectral curve and the line bundle for the system and its dual are
the same (apart from interchanging the two copies ofCP1).

The symplectic manifoldM on which the flows are defined consists of triples(Σ,B, s),
whereB is a line bundle of degree zero overΣ ands is a section defined in a neighbourhood
of the pointsw = ∞ andz = ∞. Two such sections are regarded as equivalent if the first
two terms in their Taylor expansion ofs at these points are the same, so the dimension of
M is 2(nr + n+ r).

There is a standard line bundle overCP1 × CP1 (less(∞,∞)) with transition function
exp(wz): this encodes the behaviour of the differential operators at their singularities. The
Hamiltonianshi are labelled by the points at infinity, and they are in involution. They are
defined by associating a meromorphic section ofB ⊗ E with each point at infinity. The
zerosqi of the section are the ‘divisor coordinates’ in[1], and the Hamiltonian is given by
a residue at infinity constructed from the section.

The two operators are recovered by treating the coordinatesw andz as multiplication
operators on the sections of a line bundleL of degreenr, which has divisor made up of the
qi’s, together with points at infinity. Under a Hamiltonian flow, theqi’s move andL is twisted
over the point at infinity associated with the Hamiltonian. The role ofE here is critical: it
gives rise to the twist, which can be seen as having its origin in the evolution of the diagonal
exponentials in the formal solutions of the linear systems in[9]. Harnad’s nonautonomous
Hamiltonian description is the Marsden–Weinstein reduction by the Hamiltonian action.

2. The spectral curve

The relationship between the two systems is driven by the geometry of their common
spectral curveΣ ⊂ CP1 × CP1. This has equation

det(zIr −GT(a− wIn)
−1F + b) = 0, (5)

wherew andz are the coordinates on the two copies ofCP1. It is ann-fold cover of the
z-copy ofCP1, and anr-fold cover of thew-copy. For generic values ofF andG, which
we shall assume, it is a smooth curve. The dual problem gives the same curve (with the two
coordinates interchanged). This follows either by using the identity

det(a− wIn)det(zIr −GT(a− wIn)
−1F + b)

= det(b− zIr)det(wIn − F(b− zIr)
−1Gt + a), (6)

from [6]; or by noting that the curve is the set{(w, z)} on which the linear equations

(a− w)u− Fv = 0, Gtu− (b− z)v = 0 (7)
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have nonzero solutions forv ∈ C
r, u ∈ C

n. There arer points, denoted byx1, . . . , xr, at
whichw = ∞, u = 0, andv is an eigenvector ofb; and there aren pointsy1, . . . , yn at
which z = ∞, v = 0, andu is an eigenvector ofa.

The spectral curve is given for both systems by the vanishing of

det

[
M −

(
w 0

0 z

)]
= 0, whereM =

(
a −F

−Gt b

)

and the solutions to the linear equations embedΣ in CPn+r−1.

Proposition 2.1. The genus ofΣ is g = (n− 1)(r − 1).

This follows by equating 2g − 2 to the number of zeros of the 1-formα introduced below
in Eq. (15); all the zeros are atw = ∞ or z = ∞.

3. Line bundles

The second ingredient in the construction is the line bundleL → Σ, defined to be the
dual of the tautological bundle onCPn+r−1, restricted toΣ. The curve determines the
eigenvalues of a matrix at each point, and the fibres of the line bundle are dual to the
corresponding eigenspaces—that is,L is dual to the line bundle given by the solutions to
the linear system(7) at each point ofΣ.

Proposition 3.1. For generic F and G, deg(L) = nr.

Proof. Let F̃ , G̃, b̃ denote the matrices obtained by deleting the first column fromF,G,
and the first row and column fromb. Let L̃ → Σ̃ be the line bundle and curve determined
by a, b̃, F̃ , G̃, and putδ = deg(L) andδ̃ = deg(L̃). The map that sends(u, v) to the first
component ofv is a holomorphic section ofL, and so hasδ zeros. Of these,r − 1 are at
w = ∞, andn are atz = ∞. The remainder are at the finite values ofw andz at which
there are nonzero solutions to the linear equations

(a− w)ũ− F̃ ṽ = 0, G̃tu− (b̃− z)ṽ = 0, G1tũ = 0, (8)

in other words they are given by the finite zeros of the holomorphic section(ṽ, ũ) �→ G̃tũ

of L̃. Such a section hasr − 1 zeros atw = ∞ and is nonvanishing (for genericG) at
z = ∞. It therefore has̃δ− r + 1 zeros at finite values ofw andz. Hence

δ− (r − 1)− n = δ̃− (r − 1)

which givesδ = δ̃ + n. For r = 1, the only points ofΣ at whichv1 = 0 are then points
abovez = ∞, so the result follows by induction onr. �

For generic matrices,H0(Σ,L) has dimensionnr−g+1 = n+ r, with the global sections
of L determined by constant row vectors of lengthn+ r.
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Let us put

L1 = L⊗ L−1
y1

⊗ · · · ⊗ L−1
yn
, L2 = L⊗ L−1

x1
⊗ · · · ⊗ L−1

xr

and denote byπ1 andπ2 the projections fromΣ onto thew- andz-spheres. ThenL1 and
L2 have respective degreen(r − 1) andr(n− 1), and

deg(π1∗Li) = deg(Li)+ 1 − g− deg(πi) = 0.

Proposition 3.2. The direct images of the bundlesL1 andL2 on CP1 given by the two
projections above are degree 0 vector bundles(and hence generically trivial) of rank r and
n, respectively.

The global sections ofπ1∗L1 andπ2∗L2 are given by constant row vectors inC
r andC

n,
respectively. In the same way as in[7], multiplication of the corresponding sections of
L1 andL2 overΣ by z andw, respectively, determines two meromorphic matrix-valued
functionsZ(w) andW(z). The original linear system of linear differential equations and its
dual are

dv

dw
= Z(w)v and

du

dz
= −W(z)u.

4. Infinitesimal deformations

An infinitesimal isomonodromic deformation of a linear operator of the form(2) is
given by making an infinitesimal ‘singular gauge transformation’ byΩ(w), whereΩ is a
matrix-valued rational function ofw, with poles at the singularities of the operator. It must
be chosen so that the transformed operator has the same singularity structure as the original
[9].

Our starting system is equivalent to

(a− w)u− Fv = 0, −Gtu+ (b− ∂w)v = 0. (9)

An infinitesimal deformation that changes the eigenvalues atw = ∞ will be given by
v �→ (1 + wD)v whereD = diag(d1, . . . , dr) is a small diagonal matrix. The deformed
system is

(a− w)u− F(1 + wD)v = 0, −Gtu+ (b− ∂w)(1 + wD)v = 0.

On ignoring terms of orderD2, the second equation is equivalent to

∂wv− bv+ Dv+ (1 − wD)Gtu = 0.

Now

(1 − wD)Gtu= (1 − wD)Gt(a− w)−1F(1 + wD)v

= −[D,GtF ]v+Gt(a− w)−1Fv− DGta(a− w)−1Fv

+Gta(a− w)−1FDv,



G. Sanguinetti, N.M.J. Woodhouse / Journal of Geometry and Physics 52 (2004) 44–56 49

where we have usedw(a − w)−1 = a(a − w)−1 − 1, and ignored terms involvingD2.
Therefore, the deformed system is equivalent to(9), but witha, b, F,G changed by

�a = 0, �b = −D − [D,GtF ], �Gt = −DGta, �F = aFD.

Equivalently, to the first order inD, M is deformed to(
1 0

DGt 1

)[
M −

(
0 0

0 D

)](
1 −FD

0 1

)
. (10)

Generally, however, the new matrixb + �b is not diagonal. To get back to a system of the
original form, we make a further constant gauge transformation byC, where

Cij = (GtF)ij (di − dj)

bi − bj
, i �= j (11)

(note that we require that thebi’s should be distinct). The net result is to replaceM by

M
′ =

(
1 0

DGt 1 − C

)[
M −

(
0 0

0 D

)](
1 −FD

0 1+ C

)
. (12)

If instead we takeΩ = GtD(a−w)−1F , whereD is now a diagonaln× n matrix, then by
a similar calculation, we get that(9) is changed by

�a = D + [FGt,D], �b = 0, �F = −DFb, �Gt = bGtD.

On rediagonalisinga, this gives

M
′ =

(
1 + C DF

0 1

)[
M −

(
D 0

0 0

)](
1 − C 0

−GtD 1

)
, (13)

where now

Cij = (FGt)ij (di − dj)

ai − aj
.

This is an isomonodromic deformation in which the positions of the poles atw = ai move
to the eigenvalues ofa+ �a, without changing thebi’s.

By comparing(12) and (13), it is clear that isomonodromic deformations of the original
system are also isomonodromic deformations of its dual.

5. Elementary deformations

We say that a deformation iselementarywheneverD has rank one, so that either it
changes just one eigenvalue at infinity, or moves just one of the regular singularities. What
is the effect onL andΣ of an elementary deformation of the form(13), whereD11 = ε,
with the other entries zero?
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We shall denote the deformed curve and line bundle byL′ → Σ′, and use a prime to
indicate the quantities associated with them. To the first order inD, we have

M
′ −

(
w 0

0 z

)
=
(

1 + S DF

0 1

)[
M −

(
w+D 0

0 z

)](
1 − S 0

−GtD 1

)
,

whereS = C+wD. So we obtainΣ′ by replacinga by a−D in M (this is true only to the
first order—that is, only forinfinitesimaldeformations).

Now consider the sectionσ ofL given by(u, v) �→ ν(u), whereν is a constant row vector
with 1 in the first entry, and 0’s in the other entries. Thenσ = 0 atx1, . . . , xr, y2, . . . , yn,
whereΣ andΣ′ intersect. Denote its other zeros byq1, . . . , qg. At each such pointq, we
haveDu = 0 and

M
′
(
(1 + C)u

v

)
=
(
w(1 + C)u

zv

)
.

It follows thatΣ andΣ′ also intersect atq, and that

σ′ : (u′, v′) → ν(1 − C)u′

is a section ofL′ that vanishes at eachqi. We also have thatσ′ = 0 atx1, . . . , xr.
To understand what happens toσ′ at y2, . . . , yn, we consider the behaviour ofu, v near

z = ∞, w = ai (i �= 1). By expanding in powers ofz, we have

u = u0 + z−1u1 + O(z−2), v = z−1v1 + O(z−2), w = ai + z−1ci + O(z−2),

where we takeu0 to have a 1 in theith entry, with the other entries zero. On substituting
into (7), we obtain

au1 − Fv1 = aiu1 + ciu0, Gtu0 = v1

and hence that

(a− aiI)u1 = (H + ciI)u0,

whereH = FGt. Sinceν(u0) = 0, it follows thatν(u1) = H1i/(a1 − ai).
Now takez−1 = ε. SinceH ′ = H + O(ε) anda′ = a+ O(ε), we have

ν(u′) = ν((1 − C)u′) = ν((1 − C)u0)+ εH1i

a1 − ai
= O(ε2).

We can conclude that then − 1 zeros ofσ at y2, . . . , yn are shifted to zeros ofσ′ at the
nearby points onΣ′ at whichz = 1/ε. Therefore, to the first order inε, σ′/(1 − εz) is a
meromorphic section ofL′ with the following properties:

• It has zeros atq1, . . . , qg, at x1, . . . , xr, and aty2, . . . , yn at all of whichΣ andΣ′
intersect;

• It has a zero atz = ∞, w = a1 + ε, and a pole at the nearby point at whichz = 1/ε.

Otherwise it is holomorphic and nonzero. So we have the following lemma.
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Lemma 5.1. The line bundleL → Σ has a divisor contained in the intersection ofΣ and
Σ′. The deformed bundleL′ is the bundle overΣ′ with the same divisor, but twisted by
exp(1 − εz) at z = ∞, w = a1 + ε.

This can be said in a simpler way. LetV be an open set inΣ made up ofn punctured disks,
with centres at then points at whichz = ∞. We usez as a coordinate onV .

Suppose that we are given a divisor

D =
∑

kimi, mi ∈ Σ, ki ∈ Z,

together with a nonvanishing holomorphic functionP(z), defined onV . Then we have a
line bundle onLΣ → Σ, given by tensoringLD by the bundle with transition functionP .
If we have similar nearby objectsD′ (a divisor onΣ′) andP ′, then we can characterise the
change fromLΣ to LΣ′ by giving the change�D = ∑

ki �mi in D and the change�P in
P as a function ofz. Of course, there is a lot of redundancy because different choices ofD

andP will give the same bundleLΣ.
For eachΣ ∈ P, let E be the degree-zero line bundle with transition functionP =

exp(wz), wherew is defined as a function ofz by restriction toΣ. ThenL⊗E is determined
by P and the divisor

D = q1 + · · · + qg + x1 + · · · + xr + y2 + · · · + yn. (14)

The lemma can be restated as follows.

Lemma 5.2. The deformation ofL⊗ E is given by�D = 0, �P = 0.

Lemma 5.1is also true for an elementary deformation which changesb1, except that the
twist is by exp(1 − εw) atw = ∞, z = b1 + ε

6. Symplectic approach

The data of a dual pair of linear operators are encoded in the following:

• a curveΣ of genus(n− 1)(r − 1), the spectral curve of the system;
• an embedding ofΣ into CP1 × CP1, with the projections onto the twoCP1’s of degree
r andn, respectively, and

• a line bundleL → Σ of degreenr.

We shall consider how to generate isomonodromic deformations (of both systems) from
Hamiltonian flows on a symplectic manifoldM constructed, following ideas in[1], from
curves inCP1 × CP1.

Let M = CP1 × CP1 \ (∞,∞) (our spectral curves do not pass through the excluded
point, and are therefore embedded inM). Letω = dw ∧ dz: this is a meromorphic 2-form
onM, and it is holomorphic and symplectic except wherew = ∞ or z = ∞.

LetP denote the space of curves inM with the properties above (in fact we shall consider
only local deformations, soP should be thought of as an open neighbourhood of a given
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spectral curve). Then dim(P) = nr + n+ r. This can be seen by representingΣ ∈ P as the
zero set of a polynomialp(w, z) of degreen in w andr in z. The polynomial is determined
byΣ up to scale. Alternatively, ifZ is a local section ofTM|Σ, then the restriction ofiZω to
Σ is a meromorphic section of the canonical bundle with poles of order at most 2 atw = ∞
andz = ∞. It vanishes wheneverZ is tangent toΣ. Therefore, the normal bundle is

N = K ⊗ π∗
1(O(2))⊗ π∗

2(O(2)),

which has degree 2g− 2 + 2n+ 2r = g− 1 + nr + n+ r.
We remark that

α = dw

∂p/∂z
= − dz

∂p/∂w
(15)

is a natural holomorphic 1-form onΣ, with zeros only at the points at infinity; by considering
the orders of these, we can compute the genus ofΣ.

The manifoldM is obtained fromP by attaching an ‘extended Jacobian’ to each curve.
A point ofM is a point on the Jacobian of one of the curves, together with a frame for the
line bundle defined up to the second order at each point at infinity, modulo an overall scale.
In other words, a point ofM is represented by a triple(Σ,B, s) where

• Σ ∈ P;
• B → Σ is a degree zero line bundle;
• s is a nonvanishing section ofB on a neighbourhood of then+ r points ofΣ at whichω

is singular.

Two such triples(Σ,B, s) and(Σ′, B′, s′) determine the same point ofM wheneverΣ =
Σ′, B = B′ ands− ks′ has zeros of order 2 at each of then+ r points at infinity, for some
constantk. The data in the frames add 2(n+ r)− 1 extra dimensions, so

dim(M) = dim(P)+ g+ 2(n+ r)− 1 = 2(nr + n+ r).

The holomorphic symplectic structureΩ onM is analogous to that on a cotangent bundle,
with the extended Jacobians playing the role of the fibres. The symplectic form is the exterior
derivative of a ‘canonical 1-form’Θ, which is defined as follows.

LetT be a tangent vector toM at(Σ,B, s) and letZ be its projection intoP. That is,Z is a
section ofN, so the restriction ofiZω toΣ is a well-defined meromorphic 1-form, with poles
at the points at infinity. Suppose thats is defined on an open setV (not necessarily connected)
containing the points at infinity. LetU ⊂ Σ be a second open set in the complement of the
points at infinity such thatV andU coverΣ; and letβ be a meromorphic section ofB|U
with equal numbers of polespi and zerosqi, none of which are at infinity. We define

iTΘ =
∑∫ pi

qi

iZω − 1

2πi

∑∮
log

(
β

s

)
iZω, (16)

where the integrals on the right are around contours inV ∩ U surrounding the points at
infinity. Givenβ, iTΘ is well defined up to the addition of terms of the form∮

iZω = iTd

(∮
θ

)
, (17)
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whereθ = wdz and the integrals are around a closed contour inU. We could, for example,
takeβ to be a meromorphic section, so thatB = ∑

(q − p); but for a general choice,β
might be highly singular at infinity.

If β is replaced byβ′ = mβ, wherem is meromorphic onU with zeros at the poles ofβ,
then theiZΘ is unchanged up to the freedom above. This follows by applying the following
with γ = iZω.

Lemma 6.1. LetU ⊂ Σ be a connected open set with boundary∂U made up of closed
contours. Let m be a meromorphic function on U with equal number of zeros and poles;
and letγ be a holomorphic 1-form on U. Thenlog(m) can be defined on∂U and, modulo
integral multiples of the periods ofγ,

1

2πi

∮
∂U

log(m)γ =
∑∫

γ,

where on the right, the sum is over pairs of poles and zeros of m, and the integrals are along
paths in U from the zero to the pole in each pair.

By the ‘periods ofγ ’, we mean the integrals ofγ around closed contours inU. The proof is
by extending log(m) to the complement of a set of cuts along closed paths onΣ and along
paths joining paired poles and zeros ofm.

It follows thatΩ = dΘ is a well-defined 2-form onM. It is given explicitly as follows.
We chooseβ at eachm ∈M in a neighbourhood of a given point. Then the points ofM
can be labelled byΣ, the zeros and polesqi andpi of β, and the functionβ/s defined in an
annulus around each point at infinity. We use the coordinatew to identify the annuli around
w = ∞ on neighbouring curves; andz for those aroundz = ∞. Then a tangent toM is
represented by a tangent vectorZ toM at each of the pointsq, p, a vector field, also denoted
by Z, connectingΣ to the nearby curve in a neighbourhood of each point at infinity, and
the variation in log(β/s), as a function ofw or z.

Proposition 6.2. The 2-formΩ = dΘ onM is a closed nondegenerate 2-form given by
the following expression

Ω(T, T ′) =
∑
p

ωp(Z,Z
′)−

∑
q

ωq(Z,Z
′)+

∑
w,z=∞

∮
(g′iZω − giZ′ω). (18)

Note that the right-hand side vanishes identically wheneverZ = 0 andg is constant, soΩ
is well defined onM (it descends under the quotient by constant scaling ofs).

7. The Hamiltonian system

We shall construct a Hamiltonian onM for each point at infinity onΣwhich generates an
isomonodromic deformations of Harnad’s dual systems. First we deal with the Hamiltonian
associated withy1.
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For each(Σ,B, s), we choose a square root ofB⊗K. The choices are parameterised by
H1(Σ,Z2), and can be made continuously asΣ andB vary. In general, since its degree is
g− 1, the line bundle(B⊗K)1/2 ⊗E−1 has a sectionτ which is holomorphic except for a
simple pole aty1. This section is unique up to scale. Denote the zeros ofτ byq1, . . . , qg and
denote byµ the meromorphic 1-form onΣ which has zeros at the pointsqi and a double
pole aty1. Again with the qualification ‘in general’, this exists and is unique up to scale,
which we fix by requiring thatµ− dz should be holomorphic (note that the residue ofµ at
y1 necessarily vanishes).

The quotientτ2/µ is a meromorphic section ofB⊗E−2. It has simple poles at the points
qi and is otherwise holomorphic. From it, we obtain a sectionβ of B (unique up to scale)
with the following properties:

• It is holomorphic except for simple poles at the pointsqi, and for an essential singularity
aty1, where exp(2wz)β is holomorphic.

• Its zeros are the other zerosp1, . . . , pg of µ.

We define the functionh onM

h = 1

2πi

∮
y1

log

(
β

s

)
dz, (19)

where the integral is around a contour surroundingy1.
We shall calculate the derivative ofh along a tangentT ′ toM. First suppose thatT ′ does

not moveΣ. PutH = exp(2wz)β/s. ThenH is holomorphic aty1 and

T ′(h) = iT ′ d

(
1

2πi

∮
y1

log(H)dz

)
= iT ′ d

(
1

2πi

∮
y1

log(H)µ

)
= 1

2πi

∑∮
yi

g′µ,

whereg′ is the change in log(β/s), which in this case is holomorphic atz = ∞. If T ′ moves
Σ, but leavesβ/s unchanged, thenT ′(h) = 0. We conclude that the Hamiltonian vector
field T = Th generated byh is given in the representation of the previous section by taking

iZω|Σ = µ, g = 0.

How doesh generate isomonodromic deformations? We associate a dual pair with a point
ofM by identifyingL⊗ E with

(B ⊗K)1/2 ⊗ Lx1 ⊗ · · · ⊗ Lxr ⊗ · · · ⊗ Ly1 ⊗ · · · ⊗ Lyn.

In the notation ofSection 5,L⊗E is given by the divisorD in (14)together with a transition
function P , defined byP2 = β/s; and the Hamiltonian flow gives�D = 0, �P = 0,
which is isomonodromic byLemma 5.2. With this identification, therefore,h generates
isomonodromic deformations of the dual pair of linear operators determined byL. The
deformation is elementary; it changesa1, leavinga2, . . . , an, b1, . . . , br fixed.

If we relabelh, F, β, . . . ash1, F1, β1, and so on, and use subscripts to denote the analo-
gous quantities defined witha1 replaced byai. The Hamiltonianshi generate deformations
that move the otherai, leavingbi fixed.

Proposition 7.1. The Hamiltonianshi, i = 1, . . . , hn are in involution.
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Proof. We have to show thatTi(hj) = 0, whereTi is Hamiltonian vector field generated
by hi. Now

Ti(hj)= iTi

(
1

2πi

∮
yj

log(Fj)dz

)
= iTi

(
1

2πi

∮
yj

log(Fi)+ log

(
βj

βi

)
dz

)

= iTi

(
1

2πi

∮
yj

log

(
βj

βi

)
iZjω

)
= iTi

(∑
k

1

2πi

∮
yk

log

(
βj

βi

)
iZjω

)
=
∑
poles

ω(Zi, Zj)−
∑
zeros

ω(Zi, Zj) = 0,

where in the penultimate line, the sums are over the zeros and poles ofβj/βi. In going from
the fourth to the fifth line, we use the fact thatβj/βi is holomorphic atz = ∞, and that the
restriction ofiZjω toΣ is nonsingular except atyj. The last line follows because eitherZi

orZj vanishes at each pole and zero. �

By interchanging the roles ofw by −z, and z by w, we similarly define Hamiltoni-
anski (i = 1, . . . , r) that generate the other isomonodromic flows; a direct extension
of the proof above shows that these are involution with each other and with the
hi’s.

One could recover the nonautonomous picture of Harnad’s original paper[6] by ignoring
the bundleE. One would have to construct two sets of commuting Hamiltonians and perform
some symplectic quotients. A nice byproduct of this approach is an explicit symplectic
isomorphism between Harnad’s space ofn × r matrices and a symplectic quotient ofM.
For details, see[10].

Acknowledgements

We thank Marta Mazzocco for drawing our attention to John Harnad’s work, and John
himself for interesting discussions.

References

[1] M.R. Adams, J. Harnad, J. Hurtubise, Darboux coordinates and Liouville–Arnold integration in loop algebras,
Comm. Math. Phys. 155 (1993) 385–413.

[2] W. Balser, W.B. Jurkat, D.A. Lutz, Birkhoff invariants and Stokes’ multipliers for meromorphic linear
differential equations, J. Math. Anal. Appl. 71 (1979) 48–94.

[3] B.A. Dubrovin, Geometry of 2D topological field theories, Springer Lect. Notes Math. 1620 (1995) 120–
348.

[4] B.A. Dubrovin, Painlevé transcendents in two-dimensional topological field theory, The Painlevé property,
CRM Ser. Math. Phys., Springer, New York, 1999, pp. 287–412.

[5] R. Donagi, Seiberg–Witten integrable systems, Surv. Diff. Geom. IV (1998).
[6] J. Harnad, Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166

(1994) 337–365.



56 G. Sanguinetti, N.M.J. Woodhouse / Journal of Geometry and Physics 52 (2004) 44–56

[7] N.J. Hitchin, Integrable systems and Riemann surfaces, in: Integrable Systems, Oxford University Press,
Oxford, 1999, pp. 11–52.

[8] M. Jimbo, T. Miwa, Y. Mori, M. Sato, Density matrix of an impenetrable Bose gas and the fifth Pailevé
transcendent, Physica D 1 (1980) 80–158.

[9] M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformation of linear ordinary differential equations
with rational coefficients I, Physica D 2 (1981) 306–352.

[10] G. Sanguinetti, Complex Geometry of Dual Isomonodromic Systems, D.Phil. Thesis, Oxford, 2002.


	The geometry of dual isomonodromic deformations
	Introduction
	The spectral curve
	Line bundles
	Infinitesimal deformations
	Elementary deformations
	Symplectic approach
	The Hamiltonian system
	Acknowledgements
	References


