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Abstract

The JMMS equations are studied using the geometry of the spectral curve of a pair of dual
systems. It is shown that the equations can be represented as time-independent Hamiltonian flows
on a Jacobian bundle.
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1. Introduction

In this paper we revisit the geometry of dual isomonodromic deformations of a linear
system onCP;. The duality was originally studied, at least in the form in which we are
interested, by Harnaff]—although it is closely related to the ‘Laplace transform’ in the
theory of Frobenius manifoldg,3].

The problem is to construct isomonodromic deformations of a linear meromorphic dif-
ferential operator on the Riemann sphéi@; of the form

d " N;
— —b— , 1
dw Z w — a; @)
i=1
where theN;’s are rank one; x r matrices, ané = diag(by, . . ., b,), with theb; distinct.

The corresponding linear system of differential equationsiv@gular singularities at the
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pointsa;, together with an irregular singularity of Poincaré rank one at infinity, where the
leading coefficient has distinct eigenvalues.

The isomonodromic deformations are governed by the IMMS equd8priEhese ap-
pear, or are closely related to equations that do appear, in many areas of mathematical
physics, from impenetrable bose gases, where they were originally introduced, to Frobe-
nius manifolds and Seiberg-Witten problems (E&8]).

We shall consider deformations that fix the position of the pole at infinity, but change
the parameters; anda;. Such deformations are equivalent to the deformations of a second
‘dual system’ of the same type, in which the roles of the two sets of parametensib;
are interchangef6]. The dual system is constructed by using the rank-one property of the
N;'s to write the first linear operator in the form

d
— —G'a—wl,)tF +b, 2
dw
whereG, F aren x r matrices and = diag(as, . . ., a,). Then the dual operator is
d
— —Fb—-12,)" G +a. (3)
dz

At a formal level, the duality is given by writing the first linear system of ODEs in the form
d
<—+b>v—Gtu=O, (a—w)u+Fv=0,
dw

wherev is anr-vector andu is ann-vector—this reduces t2) on elimination ofu. Then
the second system is given by a formal application of the Laplace transform, to replace
d/dw by z, andz by —d/dw, as was done in a related context by Balser gdland later
in the context of Frobenius manifolds by Dubroy.

In his original investigation, Harnad considered Hamiltonian flows on certain subspaces
of the loop algebral(n)_, the subspaces being given by varying the té@— zl,) ~1G'in
(3)- He showed that they were generated by the polynomials invariant by the adjoint action
of the loop grougsl(n). By writing down the explicit Lax equations, he deduced that they
correspond to the isomonodromic deformations of the system that change the position of the
regular singularities. He showed that they could be viewed as time-dependent Hamiltonian
flows on the symplectic manifold of pairs afx r matrices, with respect to a canonical
symplectic form. The ‘times’ are the positions of the poles, and the Hamiltonians are

1
HN) = — f tr(Mw, @))% dw, @
where

Nw,a) =G (a—wl,) YF+b

and the integral is around a loop containing only itiepole. They generate the nonau-
tonomous system

ON; [Nj.N; ON;
Wy WMy =1, L= b+ ) N
da;  aj—a; dai A T
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Here, we shall show that the Hamiltonian theory can be understood in a different way by
introducing natural variables conjugate to th&s andb;’'s. We associate with the linear
system(1) aspectral curveX' in CP; x CPq, given by

detN(a, w) —zl,) =0

and aline bundlé, — X of degreenr (essentially the line bundle determined by the ‘divisor
coordinates’ if1]). The spectral curve and the line bundle for the system and its dual are
the same (apart from interchanging the two copie€Bf).

The symplectic manifold1 on which the flows are defined consists of triplés B, s),
whereB is a line bundle of degree zero o\vErands is a section defined in a neighbourhood
of the pointsw = co andz = oco. Two such sections are regarded as equivalent if the first
two terms in their Taylor expansion efat these points are the same, so the dimension of
Mis2(nr+n+r).

There is a standard line bundle o¥@P; x CP; (less(oco, co0)) with transition function
exp(wz): this encodes the behaviour of the differential operators at their singularities. The
Hamiltoniansh; are labelled by the points at infinity, and they are in involution. They are
defined by associating a meromorphic sectiorBa® E with each point at infinity. The
zerosg; of the section are the ‘divisor coordinates’ij, and the Hamiltonian is given by
a residue at infinity constructed from the section.

The two operators are recovered by treating the coordinatasd z as multiplication
operators on the sections of a line bundlef degreenr, which has divisor made up of the
gi's, together with points at infinity. Under a Hamiltonian flow, this move and_ is twisted
over the point at infinity associated with the Hamiltonian. The rol& dfere is critical: it
gives rise to the twist, which can be seen as having its origin in the evolution of the diagonal
exponentials in the formal solutions of the linear systeni8jinHarnad’s nonautonomous
Hamiltonian description is the Marsden—Weinstein reduction by the Hamiltonian action.

2. The spectral curve
The relationship between the two systems is driven by the geometry of their common
spectral curveX’ ¢ CP1 x CPP1. This has equation
detzl, — G (a — wl,) " F + b) = 0, (5)

wherew andz are the coordinates on the two copiesQ#;. It is ann-fold cover of the
z-copy of CP1, and arv-fold cover of thew-copy. For generic values d@f andG, which
we shall assume, it is a smooth curve. The dual problem gives the same curve (with the two
coordinates interchanged). This follows either by using the identity
deta — wl,) detzl, — GT(a — wl,) " 1F + b)
= det(b — zl,) detwl, — F(b — zI,) "1G' + a), (6)

from [6]; or by noting that the curve is the détv, z)} on which the linear equations
(a—wyu—Fv=0, Gu—b-2v=0 @)
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have nonzero solutions fare C", u € C". There are points, denoted by, ..., x,, at
whichw = oo, u = 0, andv is an eigenvector of; and there ar@ pointsy, ..., y, at
whichz = oo, v = 0, andu is an eigenvector af.

The spectral curve is given for both systems by the vanishing of

det|mM— ¥ 0 —0, whereM=[ “ -F
0 z -G' b

and the solutions to the linear equations embeid CP,,,_1.
Proposition 2.1. Thegenusolisg=(n — 1)(r — 1).

This follows by equating 2 — 2 to the number of zeros of the 1-fommintroduced below
in Eq. (15) all the zeros are ab = oo or z = oo.

3. Linebundles

The second ingredient in the construction is the line buddle- X, defined to be the
dual of the tautological bundle o8P,,,_1, restricted toX. The curve determines the
eigenvalues of a matrix at each point, and the fibres of the line bundle are dual to the
corresponding eigenspaces—thatliss dual to the line bundle given by the solutions to
the linear systen(7) at each point of.

Proposition 3.1. For generic F and Gdeg L) = nr.

Proof. Let F, G, b denote the matrices obtained by deleting the first column fro,
and the first row and column froi Let L — X be the line bundle and curve determined
bya, b, F, G, and puts = degL) ands = degL). The map that sendg, v) to the first
component ofv is a holomorphic section df, and so hag zeros. Of these; — 1 are at

w = o0, andn are atz = oo. The remainder are at the finite valueswfindz at which
there are nonzero solutions to the linear equations

(a—w)ii— Fv =0, Gu—(b-2v=0, G =0, (8)

in other words they are given by the finite zeros of the holomorphic se@tian — Gli
of L. Such a section has— 1 zeros atw = oo and is nonvanishing (for gener@) at
7 = oo. It therefore hag — r + 1 zeros at finite values af andz. Hence

S—(r—-1D—-n=8—(r-1

which givess = § + n. Forr = 1, the only points of at whichv; = 0 are the: points
abovez = oo, so the result follows by induction on O

For generic matrices/°(%, L) has dimensionr — g+ 1 = n +r, with the global sections
of L determined by constant row vectors of length- r.
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Let us put
— -1 -1 _ -1 1
Li=L®L, ®  -®Ly", Ly=L®L,® QL

and denote byr; andswo the projections from¥ onto thew- andz-spheres. The.; and
L> have respective degre€¢r — 1) andr(n — 1), and

degT[]_*Li) = dEQLi) +1—g— degm) =0.

Proposition 3.2. The direct images of the bundlés and L, on CP; given by the two
projections above are degree 0 vector bundbasd hence generically triviabf rank r and
n, respectively

The global sections of1, L1 andno, Lo are given by constant row vectors@ andC”,
respectively. In the same way as|if], multiplication of the corresponding sections of
Ly and Ly over X by z andw, respectively, determines two meromorphic matrix-valued
functionsZ(w) andW(z). The original linear system of linear differential equations and its
dual are

dv du
— =Z(w)v and — = —-W(u.
dw dz

4. Infinitesimal deformations

An infinitesimal isomonodromic deformation of a linear operator of the f@2nis
given by making an infinitesimal ‘singular gauge transformationhiw), wheres2 is a
matrix-valued rational function afy, with poles at the singularities of the operator. It must
be chosen so that the transformed operator has the same singularity structure as the original
[9].

Our starting system is equivalent to

(a—wu—Fv=0, —Glu+B-29,)v=0. 9
An infinitesimal deformation that changes the eigenvalues at oo will be given by
v = (14 wD)v whereD = diag(ds, ..., d,) is a small diagonal matrix. The deformed
system is

(a — w)u — F(1+ wD)v = 0, —G'u+ (b - 3,)A +wD)v=0.

On ignoring terms of ordeb?, the second equation is equivalent to
v — bv + Dv+ (1 — wD)G'u = 0.
Now
(1—wD)G' = (1 — wD)G'(a — w) " *F(1 + wD)v
=—[D, G'F]v + G'(a — w)"Fv — DGla(a — w)"tFv
+ Gta(a — w)_lFDv,



G. Sanguinetti, N.M.J. Woodhouse / Journal of Geometry and Physics 52 (2004) 44-56 49

where we have uset(a — w)~! = a(a — w)~! — 1, and ignored terms involvingp?.
Therefore, the deformed system is equivaler(®)pbut witha, b, F, G changed by

da =0, 8 =—D —[D, G'F], 3G' = —DGla, dF = aFD.

Equivalently, to the first order i, M is deformed to

(oo )0 2)](e %) o

Generally, however, the new matibx+ 8b is not diagonal. To get back to a system of the
original form, we make a further constant gauge transformatiofi,lwhere

(G'Fij(d; — dj)

C.. —
! bi — b,

L (11)

(note that we require that thg's should be distinct). The net result is to repladeby

, 1 0 0 0 1 -FD
M = M — . (12)
(DGt 1—c>[ (0 D):|<O 1+C>

If instead we take2 = G'D(a — w)~1F, whereD is now a diagonat x n matrix, then by
a similar calculation, we get thé®) is changed by

da = D +[FG', D], db =0, 8F = —DFb, 3G' = bG'D.

On rediagonalising, this gives

M,:<1+C DF)|:M_<D 0)}(1—c O>, 13)
0 1 00 -G'D 1

where now
(FGYjj(di — d;)

Cij =
a; —aj

This is an isomonodromic deformation in which the positions of the poles=ataz; move
to the eigenvalues ef + 34, without changing thé;’s.

By comparing(12) and (13)it is clear that isomonodromic deformations of the original
system are also isomonodromic deformations of its dual.

5. Elementary defor mations

We say that a deformation slementarywheneverD has rank one, so that either it
changes just one eigenvalue at infinity, or moves just one of the regular singularities. What
is the effect onL and X of an elementary deformation of the for(13), where D11 = ¢,
with the other entries zero?
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We shall denote the deformed curve and line bundld.by> X', and use a prime to
indicate the quantities associated with them. To the first ordéx, ive have

()-8 D)5 e )

whereS = C + wD. So we obtainZ’ by replacingz by a — D in M (this is true only to the
first order—that is, only foinfinitesimaldeformations).

Now consider the sectianof L given by(u, v) — v(u), wherev is a constant row vector
with 1 in the first entry, and O's in the other entries. Tlhea: 0 atxi, ..., xy, ¥2, ..., Y,
where ¥ and X’ intersect. Denote its other zeros y, . . ., ¢,. At each such poing, we
haveDu = 0 and

M A+ OCu _ w(l+ C)u .
v v
It follows that X and X’ also intersect aj, and that

oW, v) > vl-COu

is a section of.’ that vanishes at eaeh. We also have that’ = 0 atxy, ..., x,.
To understand what happensdoat y, .. ., y,, we consider the behaviour of v near
z =00, w = qg; (i # 1). By expanding in powers af, we have

u=uo+z 1 +0z?, v=z11+0z?, w=a+zt+0z?),

where we taker to have a 1 in théth entry, with the other entries zero. On substituting
into (7), we obtain

aw — Fvy = ajur + cjuo, Gtuo =1
and hence that
(a —a;Dui = (H + ¢;Duo,

whereH = FG!. Sincev(ug) = 0, it follows thatv(uy) = Hyi/ (a1 — a;).
Now takez ! = €. SinceH’ = H + O(¢) anda’ = a + O(¢), we have
H .
(') = v((A - Ow') = v((d - Cug) + B O(ez).
—a;
We can conclude that the— 1 zeros ofo at yy, ..., y, are shifted to zeros af at the
nearby points or&’ at whichz = 1/e. Therefore, to the first order ino’/(1 — €z) is a
meromorphic section af’ with the following properties:

e It has zeros afy, ..., qg, atxy, ..., x,, and atyy, ..., y, at all of which ¥ and %’
intersect;
e It has a zero at = 0o, w = a1 + ¢, and a pole at the nearby point at which- 1/¢.

Otherwise it is holomorphic and nonzero. So we have the following lemma.
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Lemmab.1. The line bundld. — X has a divisor contained in the intersectionXfand
X’. The deformed bundI&’ is the bundle ovel’ with the same divisgibut twisted by
exp(l—ez)atz =00, w =aj +e.

This can be said in a simpler way. LEtbe an open set i& made up of: punctured disks,
with centres at the points at which; = co. We usez as a coordinate oW.
Suppose that we are given a divisor

D:Zkimi» m;e X, kielZ,

together with a nonvanishing holomorphic functiftx), defined onV. Then we have a
line bundle onL » — X, given by tensorind.p by the bundle with transition functioR.
If we have similar nearby objecf®’ (a divisor onX’) and P’, then we can characterise the
change fromL 5 to L 5» by giving the chang@D = > k; dm; in D and the chang&P in
P as a function ot. Of course, there is a lot of redundancy because different choid@s of
and P will give the same bundI& 5.

For eachX € P, let E be the degree-zero line bundle with transition funct®n=
exp(wz), wherew is defined as a function afby restriction toX'. ThenL ® E is determined
by P and the divisor

D=qi+ - +qg+x1+--+x+y2+ "+ (14)

The lemma can be restated as follows.
Lemma5.2. The deformation of. ® E is given bydD = 0,3P = 0.

Lemma 5.1is also true for an elementary deformation which charigegxcept that the
twistis by exfgl — ew) atw = 00,z = b1 + €

6. Symplectic approach

The data of a dual pair of linear operators are encoded in the following:

e acurveX of genus(n — 1)(r — 1), the spectral curve of the system;

e an embedding of into CIP; x CIP1, with the projections onto the twoP;’s of degree
r andn, respectively, and

e aline bundlel. — X of degreenr.

We shall consider how to generate isomonodromic deformations (of both systems) from
Hamiltonian flows on a symplectic manifol constructed, following ideas ifi], from
curves inCPP; x CIPy.

Let M = CP1 x CP1 \ (00, 00) (our spectral curves do not pass through the excluded
point, and are therefore embeddedi). Let w = dw A dz: this is a meromorphic 2-form
on M, and it is holomorphic and symplectic except where- oo or z = oco.

Let P denote the space of curvesinhwith the properties above (in fact we shall consider
only local deformations, s® should be thought of as an open neighbourhood of a given
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spectral curve). Then di®) = nr + n + r. This can be seen by representiBgs P as the
zero set of a polynomigh(w, z) of degree: in w andr in z. The polynomial is determined
by X up to scale. Alternatively, if is a local section of M| 5, then the restriction af;w to
X is ameromorphic section of the canonical bundle with poles of order at most 2ato
andz = oo. It vanishes whenevef is tangent ta¥.. Therefore, the normal bundle is

N = K ® 15(0(2)) ® 5(0(2)),

which has degree— 2+ 2n+2r=g—1+nr+n+r.
We remark that

dw dz
o = = —
op/0z ap/ow

is a natural holomorphic 1-form af, with zeros only at the points at infinity; by considering
the orders of these, we can compute the genus.of

The manifold M is obtained fron by attaching an ‘extended Jacobian’ to each curve.
A point of M is a point on the Jacobian of one of the curves, together with a frame for the
line bundle defined up to the second order at each point at infinity, modulo an overall scale.
In other words, a point oM is represented by a triple, B, s) where

o X P

e B — X is adegree zero line bundle;

e s is a nonvanishing section & on a neighbourhood of the+ r points of X at whichw
is singular.

(15)

Two such tripleg X, B, s) and(X’, B’, s') determine the same point 8# wheneverX =
X', B = B’ ands — ks has zeros of order 2 at each of the- r points at infinity, for some
constank. The data in the frames addi2+ r) — 1 extra dimensions, so

dm(M) =dim(P)+g+2m+r)—1=2(nr+n+r).

The holomorphic symplectic structufon M is analogous to that on a cotangent bundle,
with the extended Jacobians playing the role of the fibres. The symplectic form is the exterior
derivative of a ‘canonical 1-form®, which is defined as follows.

LetT be atangent vector td1 at(X, B, s) and letZ be its projection int@®. Thatis,Z isa
section ofV, so the restriction aof;w to X is a well-defined meromorphic 1-form, with poles
atthe points atinfinity. Suppose thas defined on an open s&t(not necessarily connected)
containing the points at infinity. L&t C X be a second open set in the complement of the
points at infinity such tha¥ andU cover X; and let8 be a meromorphic section &y
with equal numbers of poles; and zerog;, none of which are at infinity. We define

. - 1 B .
ir® = Z/L;l lzw — Z—MZyglog(;) lzw, (16)

where the integrals on the right are around contourg in U surrounding the points at
infinity. Given g, i7 @ is well defined up to the addition of terms of the form

fizwzde (% 9), 17)
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wheref = w dz and the integrals are around a closed contodf.ikVe could, for example,
take 8 to be a meromorphic section, so that= Y (¢ — p); but for a general choices
might be highly singular at infinity.

If Bis replaced by’ = mpB, wherem is meromorphic o/ with zeros at the poles ¢,
then the z® is unchanged up to the freedom above. This follows by applying the following
withy = izw.

Lemma6.1. LetU C X be a connected open set with boundaty made up of closed
contours. Let m be a meromorphic function on U with equal number of zeros and poles
and lety be a holomorphic 1-form on U. Théog(m) can be defined oAU and modulo
integral multiples of the periods ¢f,

1
2 Py log(m)y = Z/V

where on the rightthe sum is over pairs of poles and zeros ¢o&d the integrals are along
paths in U from the zero to the pole in each pair

By the ‘periods ofy’, we mean the integrals gf around closed contours . The proof is
by extending logn) to the complement of a set of cuts along closed paths amd along
paths joining paired poles and zerosiof

It follows that2 = d® is a well-defined 2-form oM. It is given explicitly as follows.
We chooses at eachm € M in a neighbourhood of a given point. Then the points\df
can be labelled by, the zeros and poleg andp; of 8, and the functiors/s defined in an
annulus around each point at infinity. We use the coordimateidentify the annuli around
w = oo on neighbouring curves; andfor those around = co. Then a tangent ta1 is
represented by a tangent vecibito M at each of the pointg p, a vector field, also denoted
by Z, connecting to the nearby curve in a neighbourhood of each point at infinity, and
the variation in logg/s), as a function ofv or z.

Proposition 6.2. The 2-form$2 = d® on M is a closed nondegenerate 2-form given by
the following expression

AT T = Zw,,(z, 7 — qu(z, 7 + Z f(g/izw —gizw). (18)
p q

w,z=00

Note that the right-hand side vanishes identically when&ver 0 andg is constant, sa2
is well defined onM (it descends under the quotient by constant scaling.of

7. TheHamiltonian system
We shall construct a Hamiltonian ovit for each point at infinity orE which generates an

isomonodromic deformations of Harnad’s dual systems. First we deal with the Hamiltonian
associated witly;.
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For each X, B, s), we choose a square rootBfR K. The choices are parameterised by
HY(X, Z5), and can be made continuously sand B vary. In general, since its degree is
g —1, the line bundlgB ® K)¥? ® E~1 has a sectiom which is holomorphic except for a
simple pole ap1. This section is unique up to scale. Denote the zeres9fyy, . . ., g, and
denote byu the meromorphic 1-form o which has zeros at the poingsand a double
pole aty1. Again with the qualification ‘in general’, this exists and is unique up to scale,
which we fix by requiring thatt — dz should be holomorphic (note that the residug.aft
y1 hecessarily vanishes).

The quotient?/. is a meromorphic section & ® E~2. It has simple poles at the points
g; and is otherwise holomorphic. From it, we obtain a seciarf B (unique up to scale)
with the following properties:

e Itis holomorphic except for simple poles at the poigtsand for an essential singularity
at y1, where exp2wz) 8 is holomorphic.
e Its zeros are the other zerps, .. ., pg of ju.

We define the function on M

1
he 2 ¢ log <ﬁ> . (19)
2ni Jy, s
where the integral is around a contour surrounding
We shall calculate the derivative bfalong a tangerit’ to M. First suppose th&t’ does
not moveX. PutH = exp(2wz)B/s. ThenH is holomorphic aty; and

N s 1 . 1 _ 1 /
T'(h) =ipd (2—7” f;l log(H) dz) =ipd (Zm_ fyl |Og(H),u,> =5 Z.(é, gu,

whereg’ is the change in log/s), which in this case is holomorphic at= co. If T moves
X, but leavess/s unchanged, theff’ (k) = 0. We conclude that the Hamiltonian vector
field T = T;, generated byt is given in the representation of the previous section by taking

izwly =u, g=0.

How does: generate isomonodromic deformations? We associate a dual pair with a point
of M by identifying L ® E with

(B®K)1/2®LX1®®LXV®®L)’1®®Lyn

Inthe notation oBection 5L ® E is given by the divisoD in (14)together with a transition
function P, defined byP?2 = B/s; and the Hamiltonian flow give8D = 0,8P = 0,
which is isomonodromic byemma 5.2 With this identification, therefore; generates
isomonodromic deformations of the dual pair of linear operators determindd e
deformation is elementary; it changes leavingay, ..., a,, b1, .. ., b, fixed.

If we relabeln, F, B, ... ashi, F1, 1, and so on, and use subscripts to denote the analo-
gous quantities defined with replaced by:;. The Hamiltonian%; generate deformations
that move the othet;, leavingb; fixed.

Proposition 7.1. The Hamiltonians:;,i =1, ..., h, are in involution
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Proof. We have to show théf;(k;) = 0, whereT; is Hamiltonian vector field generated
by h;. Now

. 1 . 1 Bj
Tl(/’l]) =iy (—27” ﬁj |09(F]) dZ) =17 (27_” f}j Iog(E) + |Og (Ej) dZ)
(24 () o (5 f (),
- (2711‘ f;/ o9 (ﬂi) lew) - ( X 2mi f;k Iog(ﬁi> le‘“)

= Za)(zi, Zj) — Za)(zi, Zj) = 0,

poles zeros

where in the penultimate line, the sums are over the zeros and p@esdfin going from
the fourth to the fifth line, we use the fact tht/ ; is holomorphic at = oo, and that the
restriction ofiz;w to X' is nonsingular except at;. The last line follows because eith&r
or Z; vanishes at each pole and zero. O

By interchanging the roles oy by —z, and z by w, we similarly define Hamiltoni-
ansk; (i = 1,...,r) that generate the other isomonodromic flows; a direct extension
of the proof above shows that these are involution with each other and with the
h;’s.

One could recover the nonautonomous picture of Harnad'’s original f&d®yr ignoring
the bundleE. One would have to construct two sets of commuting Hamiltonians and perform
some symplectic quotients. A nice byproduct of this approach is an explicit symplectic
isomorphism between Harnad’s space:of r matrices and a symplectic quotient ®.
For details, sefl0].
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